Примеры применения 3 закона ньютона на практике. Примеры применения третьего закона Ньютона

ОПРЕДЕЛЕНИЕ

Формулировка третьего закона Ньютона . Два тела действуют друг на друга с , равными по модулю и противоположными по направлению. Эти силы имеют одну и ту же физическую природу и направлены вдоль прямой, соединяющей их точки приложения.

Описание третьего закона Ньютона

Например, книга, лежащая на столе, действует на стол с силой, прямо пропорциональной своей и направленной вертикально вниз. Согласно третьему закону Ньютона стол в это же время действует на книгу с абсолютно такой же по величине силой, но направленной не вниз, а вверх.

Когда яблоко падает с дерева, это Земля действует на яблоко силой своего гравитационного притяжения (вследствие чего яблоко равноускоренно движется к поверхности Земли), но при этом и яблоко притягивает к себе Землю с такой же силой. А то, что нам кажется, что это именно яблоко падает на Землю, а не наоборот, является следствием . Масса яблока по сравнению с массой Земли мала до несопоставимости, поэтому именно яблока заметно для глаз наблюдателя. Масса же Земли, по сравнению с массой яблока, огромна, поэтому ее ускорение практически незаметно.

Аналогично, если мы пинаем мяч, то мяч в ответ пинает нас. Другое дело, что мяч имеет намного меньшую массу, чем тело человека, и потому его воздействие практически не чувствуется. Однако если пнуть тяжелый железный мяч, ответное воздействие хорошо ощущается. Фактически, мы каждый день по многу раз «пинаем» очень и очень тяжелый мяч — нашу планету. Мы толкаем ее каждым своим шагом, только при этом отлетает не она, а мы. А все потому, что планета в миллионы раз превосходит нас по массе.

Таким образом, третий закон Ньютона утверждает, что силы как меры взаимодействия всегда возникают парами. Эти силы не уравновешиваются, так как всегда приложены к разным телам.

Третий закон Ньютона выполняется только в и справедлив для сил любой природы.

Примеры решения задач

ПРИМЕР 1

Задание На полу лифта стоит груз массой 20 кг. Лифт движется с ускорением м/с , направленным вверх. Определить силу, с которой груз будет действовать на пол лифта.
Решение Сделаем рисунок

На груз в лифте действуют сила тяжести и сила реакции опоры .

По второму закону Ньютона:

Направим координатную ось , как показано на рисунке и запишем это векторное равенство в проекциях на координатную ось:

откуда сила реакции опоры:

Груз будет действовать на пол лифта с силой, равной его весу. По третьему закону Ньютона, эта сила равна по модулю силе, с которой пол лифта действует на груз, т.е. силе реакции опоры:

Ускорение свободного падения м/с

Подставив в формулу численные значения физических величин, вычислим:

Ответ Груз будет действовать на пол лифта с силой 236 Н.

ПРИМЕР 2

Задание Сравнить модули ускорений двух шаров одинакового радиуса во время взаимодействия, если первый шар сделан из стали, а второй – из свинца.
Решение Сделаем рисунок

Сила удара, с которой второй шар действует на первый:

а сила удара, с которой первый шар действует на второй:

По третьему закону Ньютона, эти силы противоположны по направлению и равны по модулю, поэтому можно записать.

В известной игре «перетягивание каната» обе партии действуют друг на друга (через канат) с одинаковыми силами, как это следует из закона действия и противодействия. Значит, выиграет (перетянет канат) не та партия, которая сильнее тянет, а та, которая сильнее упирается в Землю.

Как объяснить, что лошадь везет сани, если, как это следует из закона действия и противодействия, сани тянут лошадь назад с такой же по модулю силой F 2 , с какой лошадь тянет сани вперед (сила F 1)? Почему эти силы не уравновешиваются?

Дело в том, что, во-первых, хотя эти силы равны и прямо противоположны, они приложены к разным телам, а во-вторых, и на сани и на лошадь действуют еще и силы со стороны дороги (рис. 9).

Сила F 1 со стороны лошади приложена к саням, испытывающим, кроме этой силы, лишь небольшую силу трения f 1 полозьев о снег; поэтому сани начинают двигаться вперед. К лошади же, помимо силы со стороны саней F 2 направленной назад, приложены со стороны дороги, в которую она упирается ногами, силы f 2 , направленные вперед и большие, чем сила со стороны саней. Поэтому лошадь тоже начинает двигаться вперед. Если поставить лошадь на лед, то сила со стороны скользкого льда будет недостаточна; и лошадь не сдвинет сани. То же будет и с очень тяжело нагруженным возом, когда лошадь, даже упираясь ногами, не сможет создать достаточную силу, чтобы сдвинуть воз с места. После того как лошадь сдвинула сани и установилось равномерное движение саней, сила f 1 будет уравновешена силами f 2 (первый закон Ньютона).

Подобный же вопрос возникает и при разборе движения поезда под действием электровоза. И здесь, как и в предыдущем случае, движение возможно лишь благодаря тому, что, кроме сил взаимодействия между тянущим телом (лошадь, электровоз) и «прицепом» (сани, поезд), на тянущее тело действуют со стороны дороги или рельсов силы, направленные вперед. На идеально скользкой поверхности, от которой нельзя «оттолкнуться», ни сани с лошадью, ни поезд, ни автомобиль не могли бы сдвинуться с места.

Третий закон Ньютона позволяет объяснить явление отдачи при выстреле. Установим на тележку модель пушки, действующую при помощи пара (рис. 10) или при помощи пружины. Пусть вначале тележка покоится. При выстреле «снаряд» (пробка) вылетает в одну сторону, а «пушка» откатывается в другую.

Откат пушки и есть результат отдачи. Отдача есть не что иное, как противодействие со стороны снаряда, действующее, согласно третьему закону Ньютона, на пушку, выбрасывающую снаряд. Согласно этому закону сила, действующая со стороны пушки на снаряд, все время равна силе, действующей со стороны снаряда на пушку, и направлена противоположно ей.

В известной игре «перетягивание каната» обе партии действуют друг на друга (через канат) с одинаковыми силами, как это следует из закона действия и противодействия. Значит, выиграет (перетянет канат) не та партия, которая сильнее тянет, а та, которая сильнее упирается в Землю.

Рис. 72. Лошадь сдвинет и повезет нагруженные сани, потому что со стороны дороги на ее копыта действуют большие силы трения, чем на скользкие полозья саней

Как объяснить, что лошадь везет сани, если, как это следует из закона действия и противодействия, сани тянут лошадь назад с такой же по модулю силой , с какой лошадь тянет сани вперед (сила )? Почему эти силы не уравновешиваются? Дело в том, что, во-первых, хотя эти силы равны и прямо противоположны, они, приложены к разным телам, а во-вторых, и на сани и на лошадь действуют еще и силы со стороны дороги (рис. 72). Сила со стороны лошади приложена к саням, испытывающим, кроме этой силы, лишь небольшую силу трения полозьев о снег; поэтому сани начинают двигаться вперед. К лошади же, помимо силы со стороны саней , направленной назад, приложены со стороны дороги, в которую она упирается ногами, силы , направленные вперед и большие, чем сила со стороны саней. Поэтому лошадь тоже начинает двигаться вперед. Если поставить лошадь на лед, то сила со стороны скользкого льда будет недостаточна, и лошадь не сдвинет сани. То же будет и с очень тяжело нагруженным возом, когда лошадь, даже упираясь ногами, не сможет создать достаточную силу, чтобы сдвинуть воз с места. После того как лошадь сдвинула сани и установилось равномерное движение саней, сила будет уравновешена силами (первый закон Ньютона).

Подобный же вопрос возникает и при разборе движения поезда под действием электровоза. И здесь, как и в предыдущем случае, движение возможно лишь благодаря тому, что, кроме сил взаимодействия между тянущим телом (лошадь, электровоз) и «прицепом» (сани, поезд), на тянущее тело действуют со стороны дороги или рельсов силы, направленные вперед. На идеально скользкой поверхности, от которой нельзя «оттолкнуться», ни сани с лошадью, ни поезд, ни автомобиль не могли бы сдвинуться с места.

Рис. 73. При нагревании пробирки с водой пробка вылетает в одну сторону, а «пушка» катится в противоположную сторону

Третий закон Ньютона позволяет рассчитатьявление отдачи при выстреле. Установим на тележку модель пушки, действующую при помощи пара (рис. 73) или при помощи пружины. Пусть вначале тележка покоится. При выстреле «снаряд» (пробка) вылетает в одну сторону, а «пушка» откатывается в другую. Откат пушки и есть результат отдачи. Отдача есть не что иное, как противодействие со стороны снаряда, действующее, согласно третьему закону Ньютона, на пушку, выбрасывающую снаряд. Согласно этому закону сила, действующая со стороны пушки на снаряд, все время равна силе, действующей со стороны снаряда на пушку, и направлена противоположно ей. Таким образом, ускорения, получаемые пушкой и снарядом, направлены противоположно, а по модулю обратно пропорциональны массам этих тел. В результате снаряд и пушка приобретут противоположно направленные скорости, находящиеся в том же отношении. Обозначим скорость, полученную снарядом, через , а скорость, полученную пушкой, через , а массы этих тел обозначим через и соответственно. Тогда

Билет №2

Законы Ньютона. Примеры проявления законов Ньютона в природе и их
использование в технике.

Рассмотрим пример. Подвесим шарик на шнур. Шарик покоится относительно с.о., связанной с Землей. Вокруг шарика находятся различные тела, понятно, что они не одинаково воздействуют на шарик. Если, например, передвинуть мебель в комнате, шарик останется в покое. Но если перерезать шнур, то шарик будет падать вниз, двигаясь с ускорением. Из опыта видно, что на шарик заметно действуют 2 тела: Земля и шнур. Но их совместное влияние обеспечивало состояние покоя шарику. Если бы удалили шнур, то шарик перестал бы покоиться и начал двигаться с ускорением к земле. Если бы можно было убрать землю, то шарик двигался бы равноускоренно в сторону шнура.

Это приводит к выводу, что действия на шарик двух тел – шнура и земли – компенсируют друг друга. Рассмотренный нами пример и много других примеров позволяют сделать вывод: тело находится в состоянии покоя и равномерно относительно земли, если действия на него сил скомпенсированы. Если тело покоится, его ускорение равно 0 и скорость постоянна или равна 0.

Мы знаем, что движение и покой относительны. Относительно с.о., связанной с Землей шарик покоится. Представим себе, что мимо него движется машина с постоянной скоростью, относительно с.о., связанной с машиной, шарик движется П.Р.Д., а не покоится.

Выходит, что при компенсации действий на тело других дел оно может, не только покоится, но и двигаться П.Р.Д.

Эти примеры и другие приводят нас к одному из основных законов механики – 1 ому закону Ньютона:

Существуют такие системы отсчета, относительно которых поступательно движущееся тело сохраняет свою скорость постоянной, если на него не действуют другие тела (или действия других тел уравнивают друг друга)

Само явление сохранения скорости тела постоянной называют инерцией . Поэтому и системы отсчета, относительно которых тела движутся с постоянной скоростью – называются инерциальными (при компенсации внешних воздействий), а первый закон Ньютона – законом инерции .

Надо, однако, иметь в виду, что есть такие с.о., которые инерциальными считать нельзя. Это с.о., которые движутся относительно инерциальной с.о с ускорением. Эти с.о. называют неинерциальными.

Если мы наблюдаем ускоренное движение тела, то всегда можно доказать его причину.

Причина ускорения движения тел – действие на них других тел. Но в действительности каждое тело влияет и подвергается влиянию. Происходит так называемое взаимодействие.

Опыты показывают, что при взаимодействии двух тел оба тела получают ускорения, направленные в противоположные стороны.

Для двух данных взаимодействующих тел отношение модулей их ускорений всегда одно и тоже.

Но если брать различные тела, то и это отношение будет равным. Следовательно, каждое тело обладает некоторым присущим ему свойством, которое и определяет отношение его ускорения к ускорению его «партнера».

Это свойство называется инертностью. Когда тело движется без ускорения, говорят, что оно движется по инерции. Поэтому о теле, которое при взаимодействии изменило свою скорость на меньшее значение, говорят, что оно более инертно, чем другое тело, скорость которого изменилась на большее значение.

Свойство инертности, присущее всем телам, состоит в том, что для изменения скорости тела требуется некоторое время.

В физике свойства изучаемых объектов обычно характеризуются определенными величинами. Свойство инертности характеризуется особой величиной – массой.

То из двух взаимодействующих тел, которое получает меньшее ускорение, т.е. более инертное, имеет большую массу.

Масса – мера инертности, измеряется весами, измеряется в килограммах (кг)

a 1 /a 2 = m 2 /m 1

Принцип относительности Галлея :

Во всех инерциальных с.о. при одинаковых начальных условиях все механические процессы протекают одинаково, т.е. подчиняются одинаковым законам.

t 1 = t – время не зависит от с.к.

m 1 = m – масса не зависит от с.к.

a’ = V’-V’ 0 /t = V + U – V 0 + U/t = V – V 0 /t =a

3) Ускорение не зависит от выбора С.к.

4) Сила не зависит от выбора С.к., а определяется только взаимодействием тел.

То из тел более инертно, которое имеет большую массу. a 1 /a 2 = m 2 /m 1 .

Тела подчиняются не только первому закону Ньютона, но и другим. Мы знаем, что ускорение тела всегда вызывается действием на него другого тела – того, с которым оно взаимодействует.

В физике действие одного тела на другое, которое вызывает ускорение, называют силой . Например, падение камня вызвано силой, приложенной к нему, силой тяжести.

Сила – физическая величина. Она может быть выражена числом.

Проделаем опыт. На пружине подвесим груз. Силы предают телам ускорения. Но тела покоятся, значит a = -g, значит, сила характеризуется не только числом, но и направлением – векторная величина .

Что – же такое сила? Чтобы ответить на этот вопрос обратимся к опыту: к тележке известной массы m прикрепили конец пружины, а другой перекинули через блок. Груз под действием силы тяжести движется вниз и растягивает пружину. Растянутая на определенную длину /\l пружина действует на тележку и сообщает ей ускорения. Которое равно a. Повторим опыт с двумя тележками, соединенными вместе так, чтобы их общая масса была равна 2m. Измерим ускорение тележек при том же удлинении пружины /\l (для этого придется изменить груз на нити). Ускорение будет равно a/2. При 3 – х и 4-х тележках ускорение будет равно a/3 и a/4. Это значит, что одной и той же будет величина am.

Второй закон Ньютона :

Сила, действующая на тело, равна произведению массы тела на сообщаемое этой силой ускорение.

Ускорение сонаправлено с силой!

На тело может действовать несколько сил. Ускорение в этом случае оказывается таким, какое ему сообщила бы одна – единственная сила, равная геометрической сумме всех приложенных сил. Сумму эту обычно называют равнодействующей или результирующей силой.

Сила, равная геометрической сумме всех приложенных к телу сил, называется равнодействующей или результирующей силой.

Как и первый закон, второй закон Ньютона справедлив лишь в том случае, если движение рассматривается относительно инерциальных систем отсчета.

За единицу силы принимается сила, сообщающая телу массой 1 кг ускорение 1 м/с. Эта единица называется ньютон .

По тому же опыту, измерив ускорения двух тел, взаимодействующих каким – то образом между собой, мы можем найти отношение их масс согласно формуле. Чтобы найти массу отдельного тела нужно взять тело, масса которого принята за 1 – эталон массы.

Затем провести опыт, в котором тело, масса которого измеряется, взаимодействует с телом, масса которого известна. Тогда оба они, и тело и эталон, получат ускорения, которые можно измерить, затем записать отношение: а эт /а т = m т /m эт или m т = a эт *m эт /a т

Масса тела определяет отношение модуля ускорения эталона массы к модулю ускорения тела при их взаимодействии.Однако более удобный метод – взвешивание .За единицу массы принят килограмм.

Действия тел друг на друга всегда имеют характер взаимодействия. Каждое из тел действует на другое и сообщает ему ускорение. Отношение модулей ускорений равно обратному отношению их масс. Ускорения двух тел направлены в противоположные стороны.

m 1 a 1 = -m 2 a 2

т.к F = ma, то это можно записать так:

F 1 = F 2 –3 й закон Ньютона.

Тела действуют друг на друга с силами, равными по модулю и противоположными по направлению.

3 й закон Ньютона состоит из 5 и утверждений:

1) Силы рождаются парами

2) Силы равны по модулю

3) Парные силы направлены в противоположные стороны

4) Возникающие силы лежат на одной прямой

    Возникающие силы одной природы

Так – же как первый и второй законы Ньютона, третий закон справедлив, когда движение рассматривается относительно инерциальных систем отсчета.

Опыт: возьмем две тележки, к одной из них прикреплена упругая стальная пластина. Согнем пластину и свяжем ее ниткой, а вторую тележку поставим к первой так, чтобы она плотно соприкасалась с другим концом пластинки. Перережем нить. Пластинка разогнется, и мы увидим, что обе тележки придут в движение. Это значит, что обе получили ускорения. Так как массы тележек одинаковы, то одинаковы по модулю и ускорения. (V 1 = V 2 ; S 1 = S 2)

Если на одну тележку положить какой-нибудь груз, то мы увидим, что перемещения теперь не будут одинаковыми. Это значит, что и их ускорения неодинаковы: ускорение нагруженной тележки меньше, но ее масса больше. Произведение же массы на ускорение, т.е сила, действующая на каждую из тележек, по модулю одинакова.

В этом разделе мы рассмотрим третий закон Ньютона, приведем подробные объяснения, познакомимся со значимыми понятиями, выведем формулу. Сухую теорию мы «разбавим» примерами и рисункам-схемами, которые облегчат усвоение темы.

В одном из прошлых разделов мы провели опыты по измерению ускорений двух тел после их взаимодействия и получили следующий результат: массы взаимодействующих друг с другом тел находятся в обратной зависимости с численными значениями ускорений. Так было введено понятие массы тела.

m 1 m 2 = - a 2 a 1 или m 1 a 1 = - m 2 a 2

Формулировка третьего закона Ньютона

Если придать этому соотношению векторную форму, получится:

m 1 a 1 → = - m 2 a 2 →

Знак минус в формуле появился неслучайно. Он свидетельствует о том, что ускорения двух тел, вступивших во взаимодействие, всегда направлены в противоположные стороны.

В качестве факторов, определяющих появление ускорения, согласно второму закону Ньютона, являются силы F 1 → = m 1 a 1 → и F 2 → = m 2 a 2 → , которые возникают при взаимодействии тел.

Следовательно:

F 1 → = - F 2 →

Так мы получили фомулу третьего закона Ньютона.

Определение 1

Силы, с которыми тела вступают во взаимодействие друг с другом, равны по модулю и противоположны по направлению.

Природа сил, возникающих во время взаимодействия тел, одинакова. Эти силы приложены к разным телам, потому не могут уравновешивать друг друга. По правилам векторного сложения мы можем складывать только те силы, которые прилагаются к одному телу.

Пример 1

Грузчик оказывает воздействие на некий груз с такой же по модулю силой, с какой этот груз воздействует на грузчика. Силы направлены в противоположные стороны. Физическая их природа одна и та же: упругие силы каната. Ускорение, которое сообщается каждому из тел из примера, обратно пропорционально массе тел.

Мы проиллюстрировали этот пример применения третьего закона Ньютона рисунком.

Рисунок 1 . 9 . 1 . Третий закон Ньютона

F 1 → = - F 2 → · a 1 → = - m 2 m 1 a 2 →

Силы, воздействующие на тело, могут быть внешними и внутренними. Введем необходимые для знакомства с темой третьего закона Ньютона определения.

Определение 2

Внутренние силы – это силы, которые действуют на различные части одного и того же тела.

Если мы рассматриваем тело, находящееся в движении, как единое целое, то ускорение этого тела будет определяться лишь внешней силой. Внутренние силы второй закон Ньютона не рассматривает, так как сумма их векторов равна нулю.

Пример 2

Предположим, что у нас есть два тела с массой m 1 и m 2 . Эти тела жестко связаны между собой нитью, которая не имеет веса и не растягивается. Оба тела двигаются с одинаковым ускорением a → под воздействием некоторой внешней силы F → . Эти два тела движутся как единое целое.

Внутренние силы, которые действуют между телами, подчиняются третьему закону Ньютона: F 2 → = - F 1 → .

Движение каждого из тел в сцепке зависит от сил взаимодействия между этими телами. Если применить второй закон Ньютона к каждому из этих тел по отдельности, то мы получим: m 1 a 1 → = F 1 → , m 2 a 1 → = F 2 → + F → .